Quiz 3 - Thermochemistry | Thermochemistry

General Chemistry 2 - Quiz 3 - Thermochemistry

1

ΔH of the reaction 3 N2O (g) + 2 NH3 (g) → 4 N2 (g) + 3 H2O (g) is –879.6 kJ. What is ΔHfo for N2O in kJ/mol, knowing that ΔHfo (NH3) = -45.9 kJ/mol and ΔHfo (H2O) = -241.8 kJ/mol?

The reaction can be analyzed using the given enthalpies of formation: ΔH = ΣnΔHof (products) - ∑nΔHof (reactants).

ΔH = 4 x ΔHfo (N2) + 3 x ΔHfo (H2O) - 3 x ΔHfo (N2O) - 2 x ΔHfo (NH3)

-879.6 = 4 x 0 + 3 x (-241.8) - 3 x ΔHfo (N2O) - 2 x (-45.9)

3 x ΔHfo (N2O) = 246

ΔHfo (N2O) = 82 kJ/mol

2

What is the change in internal energy, ΔU, for a reaction that gives off 65 joules of heat and does 38 joules of work?

The change in internal energy, ΔU, is given by: ΔU = q + w

q = -65 J (heat given off, so it’s negative)

w = -38 J (work done by the system, so it’s negative)

Thus, the change in internal energy for the reaction is ΔU = -103 J

3

Based on the given bond dissociation enthalpies (BE), what is ∆Horxn for the addition of methane to ethyne to give propene? CH4 (g) + HC≡CH (g) → CH3CH=CH2 (g)
BE in kJ/mol: C-H = 415; C=C = 611; C-C = 345; C≡C = 837

The reaction involves breaking one C≡C bond (837 kJ/mol) and one C-H bond (415 kJ/mol) and forming one C=C bond (611 kJ/mol), one C–C bond (345 kJ/mol), and one C-H bond (415 kJ/mol).

ΔHo = ∑ BE (reactants) - ∑ BE (products) = ∑ BE (bonds broken) - ∑ BE (bonds formed)

ΔHo = 837 + 415 - 611 - 345 - 415 = -119 kJ/mol

4

The standard enthalpy of formation of hematite, Fe2O3 (s), is –825.5 kJ/mol and ΔHorxn 1 of CO (g) +  12 O2 (g) → CO2 (g) is -283 kJ/mol.
What is the standard enthalpy of reaction, ΔHorxn 2, for the reduction of hematite with carbon monoxide to give metallic iron as shown below? Fe2​O3 ​(s) + 3 CO (g) → 2 Fe (s) + 3 CO2​ (g)

From CO (g) + 12 O2 (g) → CO2 (g) and using Hess's Law: ΔHorxn 1 = -283 kJ/mol = ΔHo(CO2) - ΔHo(CO).
Therefore, 3 x [ΔHo(CO2) - ΔHo(CO)] = -849.0 kJ/mol.

 

Using Hess's Law: ΔHorxn 2 = [2 x ΔHo(Fe) + 3 x ΔHo(CO2)] − [ΔHo(Fe2O3) + 3 x ΔHo(CO)]
ΔHo(Fe) = 0 kJ/mol and ΔHo(Fe2O3) = -825.5 kJ/mol.
ΔHorxn 2 = 3 x [ΔHo(CO2) - ΔHo(CO)] - ΔHo(Fe2O3) = -849 + 825.5 = -23.5 kJ/mol

5

The gas-phase bromination of propene [C3H6 (g) + Br2 (g) → C3H6Br2 (g)] has a standard enthalpy of reaction of –122.5 kJ/mol. What is the standard enthalpy of formation of C3H6Br2 (g)?
ΔHof in kJ/mol: C3H6 (g) = 20.4; Br2 (g) = 30.9.

The enthalpy change of the reaction can be expressed in terms of the enthalpies of formation of reactants and products: ΔHorxn = ∑nΔHof (products) - ∑nΔHof (reactants)

ΔHorxn = ΔHof (C3H6Br2 (g)) - ΔHof (C3H6 (g)) - ΔHof (Br2 (g))

ΔHorxn = -122.5 = ΔHof (C3H6Br2 (g)) - 20.4 - 30.9

ΔHof (C3H6Br2 (g)) = -71.2 kJ/mol

6

For which reaction is ΔHorxn​ equal to ΔHof of CaSO3 (s)?

The standard enthalpy of formation (ΔHof​) of CaSO3 (s) is defined as the enthalpy change when 1 mole of CaSO3 (s) is formed from its constituent elements in their standard states. Reaction (A) represents the formation of CaSO3 (s) from calcium, sulfur, and oxygen in their standard states.

7

If the average carbon-hydrogen bond dissociation enthalpy in ethane is 416 kJ mol⁻¹, what is the bond dissociation enthalpy of the carbon-carbon bond in ethane?
∆Hof in kJ/mol: C2H6 (g) = -84.7; H (g) = 217.9; C (g) = 718.4.

The dissociation reaction of ethane is: C2​H6 ​(g) → 2 C (g) + 6 H (g)
The enthalpy change for the reaction is: ΔHdissociation​ = [2 ΔHof ​(C(g)) +6 ΔHof (H(g))] − ΔHof​​​​​​​ ​(C2​H6​ (g))
ΔHdissociation​ = [2 x 718.4 + 6 x 217.9] - (-84.7) = 2829 kJ/mol

Determine the total bond dissociation enthalpy for all the bonds in ethane:
Ethane (C2H6) has 6 C-H bonds and 1 C-C bond. 
The total bond dissociation enthalpy is: 6 x DEC−H​ + DEC−C​

Given that the average C-H bond dissociation enthalpy, DEC−H, is 416 kJ/mol, the equation becomes:
6 x 416 + DEC−C = 2829 ⇒ DEC−C​​​​​​​ = 333 kJ/mol

8

A 2.00 g sample of solid RbClO4 (M = 184.92) is added to 100.0 g water, both initially at 23.00 °C, in a well-insulated container. The final temperature of the solution is 21.56 °C. What is ΔHosolution of RbClO4? (Assume that the specific heat capacity of the solution is the same as that of pure water and neglect the heat capacity of the insulated container).

Calculate the heat absorbed by the water: q = msΔT
where m = mass of the solution = 100.0 g, s = specific heat capacity = 4.184J/goC, ΔT = change in temperature = 23.00 - 21.56 = 1.44 oC
q = msΔT = 100.0 x 4.184 x 1.44 = 0.602 kJ

Calculate the number of moles of RbClO4:
nRbClO4mRbClO4MRbClO4 = 2.00 g184.92 g/mol = 0.0108 mol

Calculate ΔHosolution:
ΔHosolution = qnRbClO4 = 0.6025 kJ0.0108 mol = 55.8 kJ/mol