Nevada Requirements for Passing High School Chemistry | General Chemistry 1

Is Chemistry Required in High School in Nevada?

Nevada high school students seeking a standard diploma, the Advanced Diploma, and the College and Career Readiness (CCR) Diploma are required to complete 2 credits in science; one in Biology and the other in Physical Science. Additionally, students in the CCR program must complete the ACT, which covers chemistry topics

Nevada science curriculum is an adapted version of the Next-Generation Science Standards (NGSS) framework for high school science curriculum, known as the Nevada Academic Content Standards for Science (NVACSS). Chemistry topics that students will explore include:

HS. Structure and Properties of Matter  

Students who demonstrate understanding can:

HS-PS1-1. - Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.]

HS-PS1-3. - Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.]

HS-PS1-8. - Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay. [Clarification Statement: Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations.]

HS-PS2-6. - Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials. [Clarification Statement: Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long-chained molecules, and pharmaceuticals are designed to interact with specific receptors.] 

HS. Chemical Reactions

Students who demonstrate understanding can:

HS-PS1-2. - Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification  Statement:  Examples  of  chemical  reactions  could  include  the  reaction  of  sodium  and  chlorine,  of carbon  and  oxygen,  or  of  carbon  and  hydrogen.]

HS-PS1-4. - Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.  [Clarification  Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change.  Examples  of models  could  include  molecular-level  drawings  and  diagrams  of  reactions,  graphs  showing  the  relative energies  of  reactants  and  products,  and  representations  showing  energy  is  conserved.]  

HS-PS1-5. - Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. [Clarification Statement: Emphasis is on student reasoning that focuses on the number and energy of collisions between molecules.]

HS-PS1-6. - Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.* [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.]

HS-PS1-7. - Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. [Clarification Statement: Emphasis is on using mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the macroscopic scale. Emphasis is on assessing students’ use of mathematical thinking and not on memorization and rote application of problem-solving techniques.]

Does Nevada Award Credit for Passing the AP Chemistry Exam?

Post-secondary schools in Nevada are required to award credit for AP Chemistry scores above 3. To better understand the school’s AP credit policy, it is best to contact them directly.